National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Shell-like structures in the ISM: Observation versus simulations
Sidorin, Vojtěch ; Palouš, Jan (advisor) ; Kulhánek, Petr (referee) ; Recchi, Simone (referee)
Title: Shell-like structures in the ISM: Observation versus simulations Author: Vojtěch Sidorin (vojtech.sidorin@gmail.com)1 Department: Astronomical Institute of Charles University2 Supervisor: Prof. RNDr. Jan Palouš, DrSc. (palous@asu.cas.cz), Astronomical Institute of the Czech Academy of Sciences3 Abstract: Shell-like structures are objects found in large numbers in the inter- stellar medium (ISM). They usually appear as bubbles or segments of bubbles and are believed to result from the deposition of mass and energy into the ISM by stars, gamma-ray bursts, or high-velocity clouds. Interstellar turbulence may play a role in their creation too. These structures influence the dynamics of the ISM and are also linked to star formation. In this thesis, I review our current knowledge of the ISM, interstellar turbulence, and shell-like structures in the ISM. Then I present the research into the GLIMPSE bubble N107 conducted in collaboration with my colleagues. N107 is a dusty shell-like structure found in our Galaxy. We explored its atomic, molecular, and radio-continuum components; derived its distance (3.6 kpc), size (radius of 12 pc), and expansion velocity (8 km s−1 ); and identified 49 associated molecular clumps. Using numerical simulations, we estimated the conditions under which N107 formed and concluded...
Modelling the Orion Nebula Cluster
Pavlík, Václav ; Šubr, Ladislav (advisor)
Title: Modelling the Orion Nebula Cluster Author: Václav Pavlík Department: Astronomical Institute of the Charles University Supervisor: doc. RNDr. Ladislav Šubr, Ph.D. (Astronomical Institute of the Charles University) Abstract: Young star clusters are widely discussed from the point of view of their evolution and structure. In this work we focused our attention on studying a typical representative of these objects - the Orion Nebula Cluster (ONC, M 42) - based on the observational data, including their confrontation with N- body models from Šubr et al. (2012). These numerical models were inspired by the recently proposed evolutionary scenario, according to which the star clusters begin their evolution from very dense initial conditions. From the analysis of the X-ray sources we revealed that the ONC is likely to be rotationally symmetric in the inner area (� 0.7 pc). Further analysis including also optical and IR observational data led us to the conclusion that the ONC is elongated from the North-East to the South-West on large scales (up to 2 pc). We also compared radial profiles of different mass groups of stars and we discovered a possibly inverse mass segregation between stars with masses in the interval (1 ; 5) M⊙ and the stars less massive than 0.5 M⊙ in the range from 0.5 pc to 1.5 pc. This...
Modelling the Orion Nebula Cluster
Pavlík, Václav ; Šubr, Ladislav (advisor)
Title: Modelling the Orion Nebula Cluster Author: Václav Pavlík Department: Astronomical Institute of the Charles University Supervisor: doc. RNDr. Ladislav Šubr, Ph.D. (Astronomical Institute of the Charles University) Abstract: Young star clusters are widely discussed from the point of view of their evolution and structure. In this work we focused our attention on studying a typical representative of these objects - the Orion Nebula Cluster (ONC, M 42) - based on the observational data, including their confrontation with N- body models from Šubr et al. (2012). These numerical models were inspired by the recently proposed evolutionary scenario, according to which the star clusters begin their evolution from very dense initial conditions. From the analysis of the X-ray sources we revealed that the ONC is likely to be rotationally symmetric in the inner area (� 0.7 pc). Further analysis including also optical and IR observational data led us to the conclusion that the ONC is elongated from the North-East to the South-West on large scales (up to 2 pc). We also compared radial profiles of different mass groups of stars and we discovered a possibly inverse mass segregation between stars with masses in the interval (1 ; 5) M⊙ and the stars less massive than 0.5 M⊙ in the range from 0.5 pc to 1.5 pc. This...
Modelování Velké mlhoviny v Orionu
Pavlík, Václav ; Šubr, Ladislav (advisor) ; Jungwiert, Bruno (referee)
Title: Modelling the Orion Nebula Cluster Author: Václav Pavlík Department: Astronomical Institute of the Charles University Supervisor: doc. RNDr. Ladislav Šubr, Ph.D. (Astronomical Institute of the Charles University) Abstract: Young star clusters are widely discussed from the point of view of their evolution and structure. In this work we focused our attention on studying a typical representative of these objects - the Orion Nebula Cluster (ONC, M 42) - based on the observational data, including their confrontation with N- body models from Šubr et al. (2012). These numerical models were inspired by the recently proposed evolutionary scenario, according to which the star clusters begin their evolution from very dense initial conditions. From the analysis of the X-ray sources we revealed that the ONC is likely to be rotationally symmetric in the inner area (� 0.7 pc). Further analysis including also optical and IR observational data led us to the conclusion that the ONC is elongated from the North-East to the South-West on large scales (up to 2 pc). We also compared radial profiles of different mass groups of stars and we discovered a possibly inverse mass segregation between stars with masses in the interval (1 ; 5) M⊙ and the stars less massive than 0.5 M⊙ in the range from 0.5 pc to 1.5 pc. This...
Shell-like structures in the ISM: Observation versus simulations
Sidorin, Vojtěch ; Palouš, Jan (advisor) ; Kulhánek, Petr (referee) ; Recchi, Simone (referee)
Title: Shell-like structures in the ISM: Observation versus simulations Author: Vojtěch Sidorin (vojtech.sidorin@gmail.com)1 Department: Astronomical Institute of Charles University2 Supervisor: Prof. RNDr. Jan Palouš, DrSc. (palous@asu.cas.cz), Astronomical Institute of the Czech Academy of Sciences3 Abstract: Shell-like structures are objects found in large numbers in the inter- stellar medium (ISM). They usually appear as bubbles or segments of bubbles and are believed to result from the deposition of mass and energy into the ISM by stars, gamma-ray bursts, or high-velocity clouds. Interstellar turbulence may play a role in their creation too. These structures influence the dynamics of the ISM and are also linked to star formation. In this thesis, I review our current knowledge of the ISM, interstellar turbulence, and shell-like structures in the ISM. Then I present the research into the GLIMPSE bubble N107 conducted in collaboration with my colleagues. N107 is a dusty shell-like structure found in our Galaxy. We explored its atomic, molecular, and radio-continuum components; derived its distance (3.6 kpc), size (radius of 12 pc), and expansion velocity (8 km s−1 ); and identified 49 associated molecular clumps. Using numerical simulations, we estimated the conditions under which N107 formed and concluded...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.